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The inertial-range spectrum from a local energy-transfer
fheory of isotropic turbulence

W D McComb
School of Engineering Science, University of Edinburgh, Mayfield Road, Edinburgh
EH9 3L, UK

Received 20 January 1975, in final form 8 September 1975

Abstract. In a previous paper it was shown that a nonlinear integral equation for turbulent
energy transport could be re-interpreted in terms of a Heisenberg-type effective viscosity.
The resulting integral equations were used to derive local (differential) equations for the
energy spectrum and effective viscosity.

In this paper we consider the integral formulation of the theory and restrict our attention
to the inertial range of wavenumbers. It is shown that the equations yield the Kolmogoroff
distribution, in the limit of infinite Reynolds numbers. The Kolmogoroff spectrum constant
is calculated and found to be a = 2-5 which is marginally outside the experimental range. It
is argued that this result is sufficient encouragement to develop a time-dependent form of
the theory, which would allow a more decisive comparison with experiment.

L Introduction

Inaprevious paper (McComb 1974, to be referred to as I) it was shown that a nonlinear
ntegral equation for turbulent energy transport could be re-interpreted in terms of a
Helsepberg-type effective viscosity. A new (integral) equation was derived for the
;ﬁecnve viscosity. This was found to permit general expansions of the integral kernels
(i powers of wavenumber cut-off ratios), leading to differential equations for the
*ergy spectrum and effective viscosity. Plausible bounds on the likely values of the
zrd)ﬁdranos were inferred from the prgperties of the original integrands and it was
o uded that the agreemer}t of predlct‘ed and experimental values for (e.g.) the
dimogoroff constant was quite encouraging.
m?;gés paper we consider t}%e integral formulation of the theory. This means that we
- :voke the cut-pﬁ ratu.)s'whlch were previogsly qsed as expansion parameters.
vy weiy mgke aquite eXPllClt calcglathn of the inertial-range constants. With this
it »Werestrict our attention to the inertial range of wavenumbers and examine the
g case of very large Reynolds numbers.

 The basic equations

Letus conei e s .
: "Z’:SNlier 1sotropic turbulence in an incompressible fluid, which occupies a box of
alater stage, we take the limit L ~ 0 (which is required for rigorous isotropy)
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180 W D McComb

and summations are replaced by integrals. If we let the velocity field be u, (x, 1) then the
Fourier components of this are defined by

u,(x,t) =§ u,(k,t) e @1

These satisfy the Fourier-transformed Navier-Stokes equation,
3 R .

(5?0 = Mo B0 Dt k-4, 2
along with the continuity equation,

kou,(k,)=0 (23
(e.g. see the book by Leslie 1973). The inertial transport operator is defined by

Maﬁ‘y(k) = %i(kﬁDa-y(k) + kyDaB(k)) (24)
where

Dog(k) = 8ag — kokglk|™ 23)

and 8,4 is the Kronecker delta.
The pair-correlation of velocities may be defined, thus:

3
(EL;) (ua(k, 1+ T)ug(k, 7)) = Dog (k) gu (1) (26)

where the form of (2.6) is dictated by isotropy. As k,D.g(k)=0, the continuity
equation will be satisfied by (2.6), for an arbitrary scalar function g, (¢), which depends
only on the magnitude of the vector k.

We take our starting point (as in I) to be the equation for g, which was derived by
Edwards (1964), but now we go directly to the steady-state form, that is:

2 &) [ 1oLy LID_ oy, @

@y +wj+w,

where h, is an arbitrary energy input to drive the turbulence, & = 1 if k+j+1=0,but
zero otherwise and o, is the lifetime of mode k and is related to the effective viscosity %
by

w = v+ )k> 28

If we call the right-hand side of (2.7) T(k), then conservation of energy may %
expressed in the form

j &k T(k)=0 9
which follows from the symmetry properties of the integrand.

At _this stage it is convenient to integrate the right-hand side of (2.7) over thes
removing the delta function, to obtain

2Jd3 T qlk+!'|(¢h—q,') - _ 2 210
] k]wk+wi+w'k+jl hk 2Vk qk (
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_ (KPP 207 e+ K+ k) (1= ) 2.11)
M K>+ 2kju + '

the cosine of the angle between the vectors k and j. .

jtshould be noted that by integrating over I we have chosc?n to study Fhe symmetric
form Of T(k) (i.e. under interchange of k and j). This is more suitable for the
ghsequent numerical analysis than the asymmetric form, which was found to be a
yeter starting point for the expansion methods followed in 1. '

Let us now briefly recapitulate the arguments leading to the fo;m for. the ;ffectlve
ity givenin I. We introduce some value of k,say k', which lies in the inertial range
o wavenumbers but is otherwise arbitrary. Then we must have

f h,‘d3k=e=—2vj K2q. &k (2.12)
k<k'

k=k’

shere ¢ is the rate of energy dissipation per unit mass of fluid. Integrating (2.10) from
zroup to k' and from infinity down to k’ yields

j d’k(zj d3ijjﬂ"—+i‘(—"£ﬂ-hk)=o (2.13)
k=i’ j=k’

(19 0 e o TP

ad
J K2 j o 1,19~ 9) +20k%,) =0, (2.14)
k>k' =k o T 0t @y

Equations (2.13) and (2.14) are the low-wavenumber and high-wavenumber forms
of the energy-balance equation. It was argued in I that we should interpret (2.13) in
terms of the effective viscosity v,. Thus equation (2.13) is written as

j &k 2vk’q—he) =0 (2.15)
k<k’
where v, is given by
’ =k-zJ L. Qpes(Gx — ;) 2.16
* =k ! quk(wk +@; + Opgy) ) ( )
ad from (2.8), the modal lifetime is
© ___sz_‘_‘( &L, Qire+1(9 — q;) ‘ (217
) =k ! g (o, +; t o) @17

mln I, we ‘interpreted equation (2.14) in terms of a diffusive input H(k) but we shall
need this for the present work. Thus equations (2.10) for g, and (2.17) for w, are
;WO equ;tions which will concern us here.
(equ:;i?y’ ;t should perhaps be e{nphasized that the lower limit in the integral for »,
ameqd tr;:( 16)) stems from an internal cancellation when j=k precisely. In 1 we
dentl at, as this cancella.tlon was approached, the integral would reach some
Sisml)c, small value when j=mk, m=1, so that the contribution from the interval
o _Coulq Pe neglected. Hence we were able to use m™' as an expansion
erin depvxng local equations. In the past, arbitrary wavenumber cut-off ratios
M used to obtain a closure (e.g. see Leslie 1973, Nakano 1972) but it should be
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clear that this was not the case in 1. By restricting our attention to the integry
formulation in this paper, we do not need the parameter m and therefore (apart froq

this brief digression) it does not appear.

3. The inertial-range solutions

Restricting our attention to the inertial range, we may simplify the problem by tak;
the limit » -0 (infinite Reynolds number), such that the dissipation rate e remajpg
constant. Under these circumstances, from equation (2.12), it follows that

lin(a) 8mvk’q, = €8(k —0). G31)

Further, it may be argued (Edwards 1965, Edwards and McComb 1969) that
4k, =ed(k) (3

is a satisfactory representation of an input which is peaked at the origin.
Then, multiplying both sides of (2.10) by 4wk?, we obtain

8mk? f &, et D) _ 500~ 5k —e0) (33

Wy +(0j +w,,‘+,-|

and (2.17) reduces to

. Qi+ —qp) A
o = d* Ly (34
) Jizk I “ g+ 0 0psy)

for the case of infinite Reynolds number.
Introducing the energy spectrum E(k), such that

E(k)=4mk’q, (39
we note that this should take the Kolmogoroff form

E(k)=ae**k™? (38)
(e.g. Leslie 1973) for all k. Hence equations (3.3) and (3.4) should be satisfied by

G =o€k 31

4

and

o = Be' k> (38)

where a and B are constants.
Lfet us now consider the energy-balance and modal-lifetime equations separately.
First, consider equation (3.3). Integrating up to any arbitrary value of k (say k= D

yields
1 «© 1
16"2f K2 ko‘ 2 de’ du Ligu-(a—q) _ (39)
0 1 -1 Wy +cuj+w]k+ii )

Substituting (3.7) and (3.8) for g, and w, we obtain

az 1 © 1 Ik+ -l-ll/3 k—11/3_ -—11/3)
L2 dkj 2 4 J‘ du L. AXT] ( J =1 (10
B J‘; ) ] daj B H Ly k2/3+j2/3+]k +j|2/3
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nd, for simplicity, W write this as
\ 2
%Cl -t (3.11)

milarly, we may substitute (3.7) and (3.8) into equation (3.4) for w, 10 obtain

Simi
«© 1 oj—~11/3,3 ~11/3 .~11/3
la s 2 J Lkilk'}']! (k =] )___ 1/31.2/3
EEE L jdj » dp k—ll/S(k2/3+j2/3+lk+jl2/3) Be k7.
(3.12)
A useful transformation is to put j = ky and (3.12) simplifies to
© -11/3 —11/3

aflf® . I‘ Lyfi+y[ " -y =1 3.13

_B_Z(ZL y“dy B du 1+y2/3+(1+ylz/3 1 (3.13)
and, finally, to the form

-gacfl. (3.14)

For the Kolmogoroff distribution to be the solution, the integralsin (3.10) and (3.13)
must gonverge. Careful evaluation shows that they do, and we obtain the results,

C‘ =0-190
C,=0-573

and hence, from (3.11) and (3.14), « =2-5. Thus our theoretical prediction of the
inertial-range spectrum is

E(k)=2-5¢**k ™" | (3.15)

4. Discussion

Letusconsider the experimental situation. As noted in I, recorded experimental values
ofthe Kolmogoroff constant & range from 1-3 to 2:7, but the distribution of such results
¥ould suggest a most probable range of 1-3 to 1-6. Taking two representative values
from this restricted range we have a = 1-34%0-06 (Gibson and Schwartz-1963) and
¢=1-44:0-06 (Grant et al 1962). However, it has been pointed out by Leslie (1973)
that the effects of statistical fluctuations, the low intensity of the spectrum at high
¥avenumbers and the ambiguities of fitting a spectrum to the data, are all such that the
resmmlm..moertainty in a is actually greater than +20%. Also, according to Kraichnan
mi;tpgvate communication), the quoted' egperimental results do not take into
oa0 e depression of the spectrum by dissipation effects. When these are taken
Pmbableum, the value obtained for « rises and a value in the region of 1-8 seems more
Alt‘;l;utg;l there_ is this uncgrtainty about the experimental value of a, it does seem
our the maximum possible value is unlikely to be any greater than 2-1 to 2-2.
158, eoretical result o = 2-5 lies above the experimental range by at least about

At first T, . .
gyim sight, th1§ is a disappointing result: but it must be borne in mind that the
Quation, which was our starting point (equation (2.7)), involves an underlying
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assumption that all time dependences are exponential. Thisisonlyan approximation
the true state of affairs; and using exponential forms rather than exact correlatigp ad
response functions can change a calculated Kolmogoroff constant by more thap 20y,
(e.g. see Leslie 1973).

Clearly this point must be resolved before we can establish the adequacy of oy
definition of the effective viscosity. However, at this stage, it seems reasonable to clajp
that the present results justify an attempt to develop the necessary time-dependen
form of the theory.

5. Conclusion

In this paper we have studied the integral form of the local energy-transfer theory
presented in I. We have shown that our equation for the effective viscosity yieldsa
satisfactory closure of the Navier-Stokes hierarchy, in that the Kolmogoroff distriby-
tion is a solution in the limit of infinite Reynolds number.

Although our theoretical result for the spectrum constant, a = 2-5, is marginally
outside the range of experimental values, we think that these results are sufficienty
encouraging to justify the extension of the theory to time-dependent and inhomogene-
ous cases.

Finally, it was pointed out in I that our definition of the effective viscosity was
essentially ad hoc (although it was argued that the physics of the situation made our
prescription seem natural and even obvious: see I for a fuller discussion). We think the
present results also provide sufficient encouragement to tackle the problem of inter-
preting the present work in the context of a more general approach. This would bein
the hope of improving the fundamental status of our theory and will be the subjectof
further work.
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