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inertial-range spectrum from a local energy-thansfer 
of isotropic turbulence 

W D McComb 
School of Engineering Science, University of Edinburgh, Mayfield Road, Edinburgh 
EH9 3JL, UK 

Received 20 January 1975, in final form 8 September 1975 

Abstract. In a previous paper it was shown that a nonlinear integral equation for turbulent 
energy transport could be re-interpreted in terms of a Heisenberg-type effective viscosity. 
The resulting integral equations were used to derive local (differential) equations for the 
energy spectrum and effective viscosity. 

In this paper we consider the integral formulation of the theory and restrict our attention 
to the inertial range of wavenumbers. It is shown that the equations yield the Kolmogoroff 
distribution, in the limit of infinite Reynolds numbers. The Kolmogoroff spectrum constant 
iscalculated and found to be a = 2.5 which is marginally outside the experimental range. It 
is argued that this result is sufficient encouragement to develop a time-dependent form of 
the theory, which would allow a more decisive comparison with experiment. 

L Introdaction 

laaprevious paper (McComb 1974, to be referred to as I) it was shown that a nonlinear 
integral equation for turbulent emery transport could be re-interpreted in terms of a 
Heisenberg-type effective viscosity. A new (integral) equation was derived for the 
eflective viscosity. This was found to permit general expansions of the integral kernels 
b powers of wavenumber cut-off ratios), leading to differential equations for the 
energy spectrum and effective viscosity. Plausible bounds on the likely values of the 
Qt+ff ratios were inferred from the properties of the original integrands and it was 
concluded that the agreement of predicted and experimental values for (e.g.) the 
Kolmogoroff constant was quite encouraging. 

this paper we consider the integral formulation of the theory. This means that we 
d n o t  invoke the cut-off ratios which were previously used as expansion parameters. 
?U we may make a quite explicit calculation of the inertial-range constants. With this 
“View,we restrict our attention to the inertial range of wavenumbers and examine the 

me of very large Reynolds numbers. 

?UCWder isotropic turbulence in an incompressible fluid, which occupies a box of 
*talater stage, we take the limit L += co (which is required for rigorous isotropy) 
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180 W D McCOmb 

and summations are replaced by integrals. if we let the velocity field be u,(x, 1) 
Fourier components of this are defined by 

These satisfy the Fourier-transformed Navier-Stokes equation, 

($+ykZ)U,(k t )=CMpsr(k)us( j ,  I Ou,(k+j,  r) ( 2 4  

along with the continuity equation, 

k,u*(t, t )  = 0 (2.3) 

(e.g. see the book by Leslie 1973). The inertial transport operator is defined by 

M,,,(k) = $( ksDa,.( k) + k , R s  ( k  )) 12.41 

= %/3 - kek,lkr2 (2.51 

where 

and S,, is the Kronecker delta. 
The pair-correlation of velocities may be defined, thus: 

(.$)3(ua(k? r+dUg(k, d ~ = R d k ) q k . ( r )  (2.6) 

where the form of (2.6) is dictated by isotropy. As k,D,,(k)=O, the continuig 
equation will be satisfied by (2.6), for an arbitrary scalar function qk(f),  which depends 
only on the magnitude of the vector k. 

We take our starting point (as in I) to be the equation for qk which was derived by 
Edwards (19641, but now we go directly to the steady-state form, that is: 

where hk is an arbitraryenergy input to drive the turbulence, = I if k -+ j+I=O,but 
zero othenvise and ut is the lifetime of mode k and is related to the effective viscositY V t  

by 
u k = ( u + u k ) k 2 .  (2.81 

If we call the right-hand side of (2.7) T(k) ,  then conservation of energy may be 
expressed in the form 

I d3k T(k) = 0 (2.9) 

which follows from the symmetry properties of the integrand. 

removing the delta function, to obtain 
At this stage it is convenient to integrate the right-hand side of (2.7) Over 

(2.101 
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(2.1 1 )  

&e cosine of the angle between the vectors k and j .  
’YLdd be noted that by integrating over I we have chosen to study the symmetric 
farn of ~ ( k )  (i.e. under interchange of k and j ) .  This is more suitable for the 
asreqaent numerical analysis than the asymmetric form, which was found to be a 
w s d n g  point for the expansion methods followed in I. 
 now briefly recapitulate the arguments leading to the form for the effective 

a*tygiven in I. We introduce some value of k, say k‘, which lies in the inertial range 
dmEnumbers but is otherwise arbitrary. Then we must have 

(2.12) 

&re E is the rate of energy dissipation per unit mass of fluid. Integrating (2.10) from 
m u p  to k’ and from infinity down to k’ yields 

d3 j Lkj qlk+il(qk - qj) - h k ) = o  (2.13) 
l k s k ,  d 3 k ( 2  [ a k f  @k +@j+ twJk+jwJ  

(2.14) 

Equations (2.13) and (2.14) are the low-wavenumber and high-wavenumber forms 
dtheenergy-balance equation. It was argued in I that we should interpret (2.13) in 
termsof the effective viscosity v k .  Thus equation (2.13) is written as 

jksk, d3k(2%k2qk - hk) = 0 (2.15) 

where vk is given by 

(2.16) 

(2.17) 

In 1, we interpreted equation (2.14) in terms of a diffusive input H ( k )  but we shall 
Rotneed this for the present work. n u s  equations (2.10) for qk and (2.17) for @k are 
be 

it should perhaps be emphasized that the lower limit in the integral for v k  

(equation (2.16)) stems from an internal cancellation when j = k precisely. In I we 
‘@ed that, as this cancellation was approached, the integral would reach some 
*OentlY s ” l  value when j = mk, m > . 1 ,  so that the contribution from the interval 
“j‘mk could be neglected. Hence we were able to use m-l as an expansion 

in deriving local equations. In the past, arbitrary wavenumber cut-off ratios 
used to obtain a closure (e.g. see Leslie 1973, Nakano 1972) but it should be 

equations which will concern us here. 
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clear that this was not the case in I. By restricting our attention to the ink@ 
formulation in this paper, we do not need the parameter m and therefore (apmb 
this brief digression) it does not appear. 

3. The iQer!ial-range solotions 

Restricting our attention to the inertial range, we may simplify the problem by 
the limit v + O  (infinite Reynolds number), such that the dissipation rate E re- 
constant. Under these circumstances, from equation (2.12), it follows that 

Further, it may be argued (Edwards 1965, Edwards and McComb 1969) that 

4?rk2hk =ES(k) (3.2) 

is a satisfactory representation of an input which is peaked at the origin. 
Then, multiplying both sides of (2.10) by 4?rk2, we obtain 

and (2.17) reduces to 

(3.31 

(3.4 

for the case of infinite Reynolds number. 
Introducing the energy spectrum E(k), such that 

E(k) = 4?rk2qk (3.3 

we note that this should take the Kolmogoroff form 
E(k) = , ~ ~ / ~ k - ~ / ~  (3.61 

(e.g. Leslie 1973) for all k. Hence equations (3.3) and (3.4) should be satisfied by 

and 
113 2/3 

Wk = B E  k (3.81 

where a and /3 are constants. 
Let us now consider the energy-balance and modal-lifetime equations Separate'f. 
First, consider equation (3.3). Integrating up to any arbitrary value of k (ay k = I )  

yields 
1 

1 6 ~ '  k 2  dk j2 djl-l d p  'k,qlk+jl(qk -qj) - - E. (3.9) 
@k+"j+wlk+jl  

Substituting (3.7) and (3.8) for qk and Wk we obtain 
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at -c1 = 1. 
B 

(3.11) 

~ ~ s e f u l  transformation is to put j = ky and (3.12) simplifies to 

uld, hilly,  to the form 
(Y -c -1. 

B2 z -  

(3.12) 

(3.13) 

(3.14) 

Forthe Kolmogoroff distribution to be the solution, the integrals in (3.10) and (3.13) 
must pnverge. Careful evaluation shows that they do, and we obtain the results, 

C1 = 0.190 

C*=O*573 

ad hence, from (3.11) and (3.14), (Y = 2.5. Thus our theoretical prediction of the 
dal-range spectrum is 

(3.15) E( k)  = 2 . 5 ~ ~ ' ~  k-5/3 .  

J-Wmnsider the experimental situation. As noted in I, recorded experimental values 
oftheKolmogoroff constant a range from 1.3 to 2.7, but the distribution of such results 
m i d  suggest a most probable range of 1.3 to 1.6. Taking two representative values 
f" this restricted range we have (Y = 1-34k 0.06 (Gibson and Schwartz 1963) and 
a=1.44f0.06 (Grant et al 1962). However, it has been pointed out by Leslie (1973) 
hat the effects of statistical fluctuations, the low intensity of the spectrum at high 
8avem"rs and the ambiguities of fitting a spectrum to the data, are all such that the 

uncertainty in (Y is actually greater than *20%. Also, according to Kraichnan 
('% Private communication), the quoted experimental results do not take into 
9 u n t t h e  depression of the spectrum by dissipation effects. When these are taken 

the value obtained for a rises and a value in the region of 1.8 seems more 
mable. 

there is this uncertainty about the experimental value of a, it does seem 
dear that the maximum possible value is unlikely to be any greater than. 2.1 to 2.2. 

theoretical result (Y = 2.5 lies above the experimental range by at least about 

At firs sight, this is a disappointing result: but it must be borne in mind that the 
wmequation, which was our starting point (equation (2.7)), involves an underlying 

15%. 
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assumption that all time dependences are exponential. This is only an approximationto 
the true state of affairs; and using exponential forms rather than exact ciXrelation a 
response functions can change a calculated Kolmogoroff constant by more than 20% 
(e.g. see Leslie 1973). 

Clearly this point must be resolved before we can establish the adequacy of om 
definition of the effective Viscosity. However, at this stage, it seems reasonable to&,,, 
that the present resulb justify an attempt to develop the necessary time-depenh 
form of the theory. 

5. Condtsion 

In this paper we have studied the integral form of the local energy-transfer theory 
presented in I. We have shown that our equation for the effective viscosity yiel&a 
satisfactory closure of the Navier-Stokes hierarchy, in that the Kolmogoroff distrib 
tion is a solution in the limit of infinite Reynolds number. 

Although our theoretical result for the spectrum constant, a = 2-5, is marginall) 
outside the range of experimental values, we think that these results are sufficiently 
encouraging to justify the extension of the theory to time-dependent and inhomogew- 

Finally, it was pointed out in I that our definition of the effective viscositywas 
essentially ad hoc (although it was argued that the physics of the situation made OUI 
prescription seem natural and even obvious: see I for a fuller discussion). We thinkthe 
present results also provide sufficient encouragement to tackle the problem of inter- 
preting the present work in the context of a more general approach. This would be in 
the hope of improving the fundamental status of our theory and will be the subject d 
further work. 

ous cases. 
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